

PROPOSED DESALINATION PLANT FOR RÖSSING URANIUM

SEIA – Public & Focus Group Meetings

July 2014

Agenda

- Welcome and introductions
- Meeting formalities and purpose of meeting
- Project background / motivation
- Overview of proposed Desalination plant for Rössing Uranium
- The SEIA process
- Social and Environmental Issues
- General discussion, comments and questions
- Way forward
- Close

Purpose of meeting

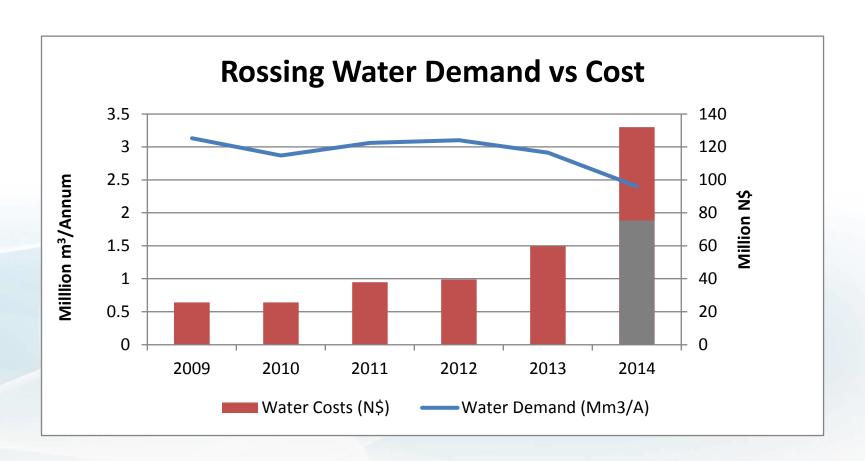
- Understand the SEIA process being followed
- Motivation and overview of the proposed project
- Discuss potential social and environmental impacts
- Input into the SEIA process

Project Background / Motivation

- Low uranium market prices Rössing is looking at ways to improve its economic viability.
- Currently, Rössing purchases desalinated water at significant cost.
- Erongo Region:
 - Centre for growth
 - central to the country's economic vitality
 - ➤ is a water scarce environment, relying predominantly on the Omdel aquifer for its supply.
- Interim measure desalinated water from the Areva desalination plant near Wlotzkasbaken, since November 2013.

Project Background / Motivation

- NamWater pursuing the development of a new desalination plant at Mile 6 (roughly 10km North of Swakopmund).
 - Outcome, timelines and commercial aspects to this project remains uncertain.
- Agreement with NamWater to secure water on a long-term basis from Areva's desalination plant at economically feasible terms could also not be reached.
- Therefore...


Rössing investigates an alternate source for desalinated seawater to reduce costs of its mining operations and enhance its commercial sustainability.

Water Costs

Proposed Desalination Plant - description

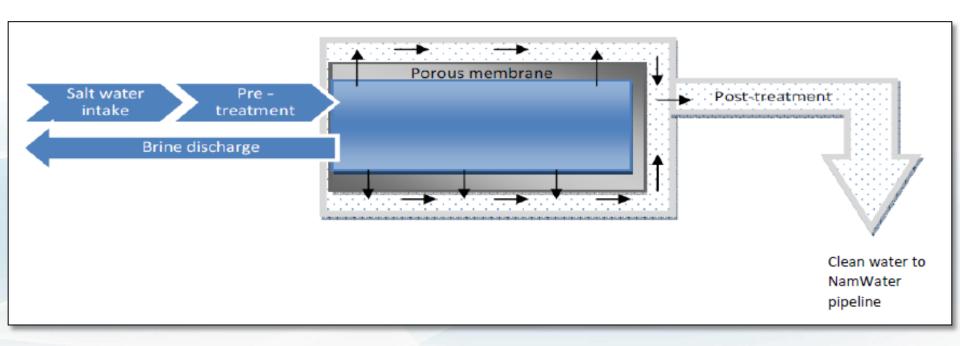
- Rössing plans to design, construct and operate a new desalination plant, approximately 6 km north of Swakopmund, for their water supply needs.
- Located at the existing Swakopmund Salt Works.

Locality Map

Proposed Desalination Plant - description

- Seawater intake system & associated infrastructure.
 - ➤ The water intake will be located close to Swakopmund Salt Works intake.
- Channel or a pipeline to <u>transport water</u> to the plant. A seawater receiving tank (or existing salt works pond).

Proposed Desalination Plant - description


- Pre-treatment plant to remove sediments, solids and organic matter.
 - Most likely comprise of a Dissolved Air Flotation (DAF) system.
- A Modular Seawater Reverse Osmosis (SWRO) <u>desalination plant</u>
 - ➤ Capacity 3 million m³/year (8,200 m³/day).
 - Housed together with the post- and pre-treatment infrastructure in a fenced off plant area.

Reverse Osmosis Process

Proposed Desalination Plant - description

- Brine outlet system and associated infrastructure.
 - Various discharge alternatives are being investigated, including 'beach disposal' and 'sea disposal' options, within the Mining Licence area of the Salt Works
- 11 kV <u>power supply</u> of approximately 6 km with a dedicated transformer, switchgear and possible new substation at the plant.
- Desalinated <u>water supply line</u> of roughly 850m to the existing NamWater pipeline
- Related services and structures i.e. offices, access road, etc.

Legend

- New Substation
- --- New Powerline
- Existing Pipelines
 - New Brine Pipeline
- Buffer Ponds
- Fresh Water Line
- Desalination Plant
- Seawater Channel
- Seawater Channe
- Accessory Works Area

SEIA PROCESS

SEIA phases

Phase 1: Project initiation/screening

- Internal screening (site visits / identify social and environmental issues)
- Meeting with MET
- July 2014

Phase 2: Scoping

- Notification
- Public participation process (including meetings)
- Scoping Report and Issues Response Report
- Comments period on Scoping documents
- July to October 2014

SEIA phases

Phase 3: SEIA

- Specialist investigations
- SEIA Report and Social and Environmental Management Plan (SEMP)
- Comment period on SEIA documents
- Submit final Reports to the MET
- MET review starts
- October 2014 to January 2015

Record of decision from the MET

Report distribution

- Language English
- Report summaries E-mail to registered IAPs
- Complete reports
 - Swakopmund Library
 - National Library of Namibia in Windhoek.
 - o CD's on request

Potential Environmental Issues

Shoreline environment

Construction activities and concentrated discharge may cause disturbances to environmentally sensitive beach areas.

Marine environment

- Intake: risk of mortality of plankton, fish eggs and fish larvae when water is sucked in at the inlet areas.
- ➤ Discharge of brine: Aquatic species have a tolerance for natural salinity levels, however if these levels undergo significant change this can be detrimental to these creatures.

Avifauna

- Power line may pose a risk to local avifauna (potential for collisions)
- Changes to the existing surface water structures in the area may also impact the local faunal residents and migrants.

Potential Environmental Issues

Social and economic impacts

➤ The development of an additional source of water may have economic implications for other water users in the region.

Noise

➤ The use of high-pressure pumps at RO plants can generate noise. Possible increase in noise levels – impact on nearby receptors (i.e. at Mile 4).

Visual

New structures will be erected that may cause negative visual impacts.

Archaeology

Construction activities impacting on possible archaeological or historical resources within the area

Environmental Team

SEIA component	Responsible party
SEIA Lead	SLR & Aurecon
Social	Ashby Associates cc
Economic assessment	Design & Development Services cc
Historical and archaeological	QRS
Noise	Airshed Planning Professionals
Visual impact and mitigation	VRM Africa
Marine and coastal birds	African Conservation Services cc
Shoreline dynamics	WSP Group Africa (Pty) Ltd
Intertidal Topographic survey	Alan Louw (Nam) Marine Services
Waste water discharge modelling	WSP Group Africa (Pty) Ltd
in the marine environment	
Marine ecology	Pisces Environmental Services (Pty) Ltd

THANK YOU!

Comments and questions

Fax/Mail further comment to Werner Petrick

Fax: (064) 403 327

Email: wpetrick@slrconsulting.com

